Generalized D-Forms Have No Spurious Creases
نویسندگان
چکیده
منابع مشابه
Generalized D-Forms Have No Spurious Creases
A convex surface that is flat everywhere but on finitely many smooth curves (or seams) and points is a seam form. We show that the only creases through the flat components of a seam form are either between vertices or tangent to the seams. As corollaries we resolve open problems about certain special seam forms: the flat components of a D-form have no creases at all, and the flat component of a...
متن کاملApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملNeural Networks with Finite Intrinsic Dimension have no Spurious Valleys
Neural networks provide a rich class of high-dimensional, non-convex optimization problems. Despite their non-convexity, gradient-descent methods often successfully optimize these models. This has motivated a recent spur in research attempting to characterize properties of their loss surface that may be responsible for such success. In particular, several authors have noted that overparametriza...
متن کاملMatrix Completion has No Spurious Local Minimum
Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in ...
متن کاملGeneralized Exponents and Forms
We consider generalized exponents of a finite reflection group acting on a real or complex vector space V . These integers are the degrees in which an irreducible representation of the group occurs in the coinvariant algebra. A basis for each isotypic component arises in a natural way from a basis of invariant generalized forms. We investigate twisted reflection representations (V tensor a line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2009
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-009-9218-7